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Abstract. The theory of the Hall effect of interacting electrons in the ladder approximation, 
formulated by Fukuyama, Ebisawa and Wada, is further investigated. The ‘dispersive’ 
contributions to the Hall conductivity, which were not given in their original paper, are 
calculated explicitly in order to complete the treatment. In the isotropic case the new term, 
as well as the old one, is shown to be related only to the electronic states at the Fermi level. 
The finalexpression thusobtainedincludes theeffect of thedamping(the finite-widtheffect). 

1. Introduction 

Microscopic theoretical treatment of the Hall effect in a weak magnetic field is known 
to be a difficult problem. This is particularly so for interacting electrons and not many 
studies have been done, although some progress has been made in the investigation of 
non-interacting electrons in disordered materials (Matsubara and Kaneyoshi 1968, 
Fukuyama et a1 1970, Levin et a1 1970, Niizeki and Hoshino 1976, Itoh and Watabe 
1978). The earliest attempts at studying interacting electrons were made by Fukuyama 
eta1 (1969) (to be referred to as FEW hereafter), by using Matsubara’s finite-temperature 
formalism and taking the ladder approximation, which is still one of very few reliable 
theories in the sense that it is manifestly gauge invariant and the nature of the approxi- 
mation is made clear. 

FEW obtained the two different types of contributions to the Hall conductivity. The 
first term, which they called the dissipative contribution, is dependent only on the states 
in the vicinity of the Fermi level. This was shown to lead to the classical result, RH = 1/ 
nec, in the limit of weak scattering?. The second term, which they called the dispersive 
contribution, is related to all the states below the Fermi level. Its evaluation is therefore 
more laborious. This contribution is, however, small in the weak scattering limit and is 
not calculated explicitly in the original paper. 

The above result of the weak scattering calculation implies that the quantum cor- 
rection cannot be evaluated without including the damping effect, i.e. the effect of the 
finite width of the spectral function. The calculation of the dispersive contribution is 
indispensable for this purpose, since it is not expected to be small when the damping is 

t The result obtained by FEW was RH = g-*/nec, where g is the so-called Mott factor (i.e. the ratio of the 
electronic density of states at the Fermi level to its free electron value). In a later investigation, however, the 
g-factors have been shown to be cancelled out by the mass-renormalisation correction to the DC conductivity 
(Itoh 1984). 
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Figure 1. The contours of the integrations for the 
frequency summation in equation (2.1). 

included. In this paper we attempt to derive an explicit expression for this contribution. 
This completes the quantum treatment in the ladder approximation for the first time. 

According to FEW, the existence of the two different contributions appears to be an 
intrinsic problem. It should be recalled that, unlike in the ordinary conduction process 
under zero magnetic field, the states below the Fermi level make a finite contribution to 
the Hall conduction because the velocity operator includes the diamagnetic current 
term. Nevertheless, as we shall see later, this new contribution can be rewritten in a 
form that is dependent only on the states in the vicinity of the Fermi level if the 
system is isotropic. Therefore, in the ladder approximation, the Hall conductivity of an 
interacting system is shown to become a Fermi-surface quantity. 

In section 2 we start with an introduction of FEW’S result. We repeat the procedure 
of the frequency summation in the finite-temperature formalism in order to see how 
the two different contributions come out. In particular the explicit expression for the 
dispersive contribution is derived. At this stage the expression is apparently ‘off-shell’, 
i.e. dependent on all the states below the Fermi level. It is then rewritten in section 3 
into an ‘on-shell’ form by assuming the isotropy of the system. The charge conservation 
law plays an essential role in this rewriting. The two contributions are combined into a 
compact form, which is expected to be useful for quantitative applications. The last 
section contains a discussion of the results. 

2. FEW’S result and frequency summation 

We consider the case of a uniform magnetic field H along the z axis. The linear part of 
the off-diagonal conductivity tensor in H ,  i.e. the Hall conductivity, is given by equations 
(2-5) and (2-19) in FEW; 
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(2.2) 
a a 

G(k ,  2') - - G(k,  z )G(k ,  2') 
dkX 

where w is the frequency of the applied electric field, T is the temperature, E ,  = 
(2n + 1)nT, G(k ,  2) is the Green function calculated in the ladder approximation and 
~ , ( ~ ~ ( k ;  z ,  z ' )  is the x ( y )  component of the vertex function for the operator 0 = (l/ih) 
[P, H ]  connected to the two propagators G(k,  z )  and G(k,  z ' ) .  Here we have followed 
the notation of Itoh (1984). The relationship to the parameters used by FEW is k + p / h  
and u(k; E+, E - )  + J /e .  In order to obtain the explicit expression we must perform the 
frequency summation and the analytical continuation iwA + w + is. The frequency 
summation is carried out as usual by the integrations on the complex energy plane along 
all the circles enclosing the singularities of the Fermi-Dirac distribution function f ( z ) .  
These contours are seen to be transformed into C1,  C2, C3 and C4 in figure 1 considering 
the branch cuts at Im z = 0 and Im z = wA. The dissipative term described in the pre- 
ceding section is the one obtained from the integrations along C2 + C3.  After analytical 
continuation it becomes 

1 
(2.3) 

e3 f ( E )  - (Bxy(E+ + hw,  E - )  - %,,(E+, E -  - nu)) IC, + i,, = czi i 2ni w 

where E' = E ? i6. The contribution from C 1  + C4 is calculated in the same way: 

which is the dispersive term. In the limit w + 0, the expression (2.3) is reduced to 

and therefore, by partial integration, 

Because of the factor ( - af/aE) this is seen to be a Fermi-surface quantity. The above 
calculation is simply a reproduction of FEW'S argument; substituting (2.2) into (2.5) we 
obtain equation (3.7) in FEW: 

where we have used the abbreviated notation U:- = u , ( k ;  E+,  E - )  and G; = 
G(k,  E ' ) ,  and vL- ( U & - )  is the x ( y )  component of U:-. Likewise, by noting that 
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$,(E+, E') = $,(E-, E- )  = 0, the expression (2.4) can be reduced in the limit of 
w+Oto 

(2.7) 

and hence we obtain 

where we have used the notation U:+ = v(k;  E + ,  E ' ) ,  analogous to U:-. In deriving 
(2.8) the terms involving the energy derivatives of the vertex functions have vanished. 
The second term in the large brackets on the RHS of (2.7) gives the complex conjugate 
of the first term. Since the above expression for axy(C1 + C,) includes f ( E )  instead of 
- af/dE, it is apparently dependent on all the states below the Fermi energy. 

3. The contribution from C1 and C4 

Now we show that the expressions (2.6) and (2.8) can be further simplified. In particular 
uxy ( C ,  + C,) is transformed into the 'on-shell' form. The key to this transformation is 
to be found in the following Ward identities (see, e.g., Mahan 1981): 

v i +  = hk/m + ( l /h ) (a /ak)Xl  

r:+ = 1 - (d/dE)X: 

G: = ( E  - h2k2/2m - C:)-l 

(3.1) 

(3.2) 

(3.3) 

where C: is the self-energy defined by 

and r:+ is the vertex function for the unit operator connected to the two propagators 
having the same energy E+. From (3.1) and (3.3) we easily see that 

( a / d E ) ~ : +  = - ( l /h> (a / w r :  + (3.4) 

( l / h ) (d /ak )Gl  = (G:)*U:' (3.5) 

(a/dE)G: = - (G:)*r:'. (3.6) 
We also have relations similar to (3.1)-(3.6) for the energy value E- ,  by defining U;-, 
C; and r,- in the same manner. It is also important to note that, if the system is 
isotropic, the current vertex functions are written in the form 

v i -  =&;- (3.7) 

v i +  = k U k + + ,  (3.8) 
where k is the unit vector along k and U $ -  and U ; +  on the left hand sides are functions 
only of k = lkl, 
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Using (3.5),  (3.7) and (3.8),  it is a straightforward task to rewrite equation (2.6) as 

Note that for isotropic systems the Green functions are also functions only of k = Ikl. In 
order to transform (2 .8) ,  we first note that 

(3.10) 

In deriving the above relation we have used (3.4),  (3.5) and (3.6). By substituting the x 
component of (3.10) into (2.8) and using (3.8),  we then have 

a a 
x ((G;)2 G: ( v : ' ) ~  + (GL)3(u l+)2  z U ; ' )  

(3.11) 

Thus, by partial integration with respect to E ,  the expression becomes 'on-shell'. The 
total contribution is therefore 

x Im[(u:-)2u;+ (Gk')'Gk - + ( U : ' ) ~ ( G ~ ' ) ~ ] .  (3.12) 

The above result is the complete expression for the Hall conductivity in the ladder 
approximation, including the full damping (finite-width) effect and the vertex correc- 
tions. If we neglect the vertexcorrections, uk+- and U ; +  are replaced by u k  = fik/m. We 
then obtain, 

(3.13) 

The above expression has appeared frequently in studies of one-electron problems in 
disordered materials. This is because these studies have dealt with the isotropic scattering 
cases, for which the vertex corrections vanish. 

4. Comments and discussion 

Although the ladder approximation has been extensively used in various many-body 
problems, its application to the Hall effect was found to be extremely complicated due 
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to the problem of the gauge invariance (see FEW)?. Although the work by FEW was 
reported rather a long time ago, the evaluation of the damping effect has never been 
attempted because of the awkward dispersive contribution. Without considering the 
damping effect one cannot go beyond the classical description, as shown by Itoh (1984), 
apart from a small correction due to the Fermi-surface shift which cannot be caused 
by the interaction effect only. The treatment by the ladder approximation has been 
completed by the present work, and we have derived an ‘on-shell’ expression for the 
Hall conductivity including the damping effect. It must be noted that the details of the 
scattering mechanism are irrelevant to our conclusions and therefore they allow for 
many-body interactions. For non-interacting electrons, Morgan et a1 (1984) and Morgan 
and Howson (1985) have recently proposed a basic formula for the Hall conductivity 
and claimed that it should generally be an ‘on-shell’ expression. However, our expression 
(3.12) is not derived from their formula. Some degree of approximation is included in 
their derivation and so it is still open to question whether their conclusion is generally 
correct (see also Itoh 1985). 

One of the most interesting observations related to the present study is the measure- 
ment made by Haussler and Baumann (1983), Haussler (1984) and by Mizutani and 
others (see, for a review, Mizutani 1983 and Haussler 1990). These authors have found 
systematic deviations of the Hall constant from its free electron value as functions of the 
carrier number for a number of sp metals in their glassy states. The former authors 
studied the noble-metal-based metallic glasses, whereas the systems investigated by the 
latter group of authors are based on Mg-Zn. In both cases the deviations become very 
small in the liquid states, as with most liquid sp metals (see Busch and Guntherodt 1974). 
These systems are characterised by the perfect isotropy, on average, and by the fact that 
the scattering is caused by disorder. The present study suggests that the damping effect 
is more important in the amorphous state than in the liquid state, although the short 
range order is expected to be stronger in the amorphous state. The d states of the noble- 
metal elements play no role as long as they are at a distance from the Fermi-level. 
Recently, Fresard et af (1990) calculated the spectral function and the resistivity of a 
model liquid system in the effective medium approximation, and found that the strong 
short range order can cause strong damping effects through Bragg scattering. Their 
conclusion is consistent with the above arguments. 

It is interesting to apply the present theory to the above systems. Due to our reduction 
of the dispersive contribution into an ‘on-shell’ form, the numerical calculation including 
the finite-width effect has been made realistic. Some preliminary attempts to perform 
such calculations are now under way. 
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